
General Meta Model of Software Quality

Adil KHAMMAL*1, Youness BOUKOUCHI#2, Mohamed Amine HANINE+3, Abdelaziz MARZAK*4

* Departement of Computer Sciences, Faculty of Sciences Ben M’Sik, Hassan II University

Departement of Computer Sciences, National School of Applied Sciences, IbnZohrUniversity

+ Departement of Computer Sciences, Sciences and technologies Faculty, Hassan I University

ABSTRACT: According to their purpose, most quality models
incorporate a variety of different information in a quality
model. However, for the best management of software quality
throughout the entire life cycle of a software product, we need
to combine these isolated models to achieve a more complete
picture of the quality of software. To overcome the ambiguity
and incompleteness of the software quality models, we must
define a formal quality Meta model. In this paper we propose
a three-step methodology for the construction of a general
Meta model of software quality. This methodology is based
essentially on the principles of Model Driven Architecture and
factoring of concepts.

Keywords—Quality Meta Model, Software Quality, Quality
Model, Model Driven Architecture.

1. INTRODUCTION

The software quality is more and more seen as an
influential critical parameter in business, it’s an important
motive for customer satisfaction. Software quality is a fairly
complex and multifaceted concept, In order to get a
complete picture of the software’s quality, we use a quality
model (McCall, ISO9126...). In [16] we proposed a
reference framework to characterize and compare the
software quality model.

This framework considers four perspectives, known
worlds of the subject, of the usage, of the system and of the
development of software quality. These four worlds are
explained by facets and their values. This framework has
allowed us to characterize and compare a number of
software quality models, and also allowed us to establish
several observations : Lack of decomposition criterion in
hierarchical models Quality attributes redundancy; Some
models do not cover the entire life cycle of a software;
Most models studied do not have a clear vision to explain
the correlation between metrics and criteria, such as when a
criteria gets a low score, it is difficult to link the score to
directly point out the issue, especially when the criterion is
made up of several metrics; Also most of these models
suffer from the absence of guidelines and criteria for
decomposition of complex quality concepts, making it
difficult for them to be sophisticated and even located in
some large quality models.

In other words, this reference framework has allowed us
to highlight the need for a Meta model, the aim of which is
not only operationalizing the existing software quality
models but also correcting their general oversights and
limitations.

In this paper we propose a three-step methodology for
the construction of a general Meta model of software
quality. This methodology is based essentially on the
principles of Model Driven Architecture and factoring of
concepts. We present initially the concepts of quality, then
we briefly present our reference framework for software
quality, then we present our methodology for building the
overall Meta model and finally we apply this methodology.

2. MODEL AND META MODEL OF SOFTWARE QUALITY

A. Model of software quality

The software quality is more and more seen as an
influential critical parameter in business, it’s an important
motive for customer satisfaction. Any absence of software
quality can cause heavy financial losses, a dissatisfaction of
the users, and the damage to the environment which can
even result in deaths as ultimate and grave consequence. To
obtain a complete image of the quality of a software we call
on the models of quality which contain rules describing
what must be a software of quality, they area well accepted
way to define, assess and predict software quality.

Examples of such hierarchical models were used first by
Boehm [1] and McCall [4] and later adapted by ISO 9126
[3]. These models define quality by decomposing with
well-known quality criteria such as functionality, reliability,
usability, efficiency, maintainability and portability which
in turn are subdivided into more specific sub-criteria.

Major contribution of McCall’s model [4] is
consideration of relationships between quality
characteristics and metrics. Quality is classified into
revision, operation and transition perspective, considering
user’s and developer’s view. Boehm [1] introduced quality
model to automatically and quantitatively evaluate the
quality of software. In this model, characteristics and sub-
characteristics are loosely-coupled and it’s (as-is) aspect is
subjectively specified. FURPS [14] model consider two
steps, setting priorities and defining quality attributes that
can be measured. Dromey [2] taken into consideration
relationship between characteristics and sub-characteristics
in its product based quality evaluation framework and
emphasized that to make a high quality product all
constituent artifacts must be of high quality, so he made a
product based quality model, but he failed to discuss how it
could be realized. ISO 9126 [3] quality model is based on
McCall and Boehm’s model which cover all aspects of
software quality but metrics are not consistent with their
own definitional concept of metric.

Adil KHAMMAL et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1728-1734

www.ijcsit.com 1728

These hierarchical models have been the basis of several
adapted models for specific needs or projects. Their
objective is to capture the knowledge on quality present in
hierarchical quality models, guidelines, and measurement
tools in one comprehensive quality model.

In [10] Bertoa proposed a quality model containing a set
of quality attributes and measurement of these attributes for
effective evaluation of COTS components. GEQUAMO is a
generic model of software quality proposed by Geqrgiadou
[11]. Ortega [12] defined a systemic approach to software
products in proposed quality model. This model is
evaluated using a method so it can be validated and also
enhanced. The software quality model proposed by Andreu
[13] is based on ISO 9126 which may be used for
development and evaluation of original components and
may be tailored according to the organization re-user and
the domain needs of the targeted component. Behkamal [6]
also proposed a model based on ISO 9126 which may be
used for evaluation of B2B applications. In this model,
quality factors are extracted from web applications and B2B
e-commerce applications. In [5] Sharma added/modified
some extra features to ISO 9126 to make it appropriate for
given applications and for weight assignment Analytical
Hierarchical Process (AHP) is used. The result value of
AHP can be used to compare and select the best suitable
component as per all desired quality characteristics.
Srivastava’s [7] model measures the software quality
statistically by taking care of three different views of user,
developer and manager. Srivastava [7] proposed a model of
software quality that takes into account the three different
views of the user, developer and manager. Kumar [9]
proposed an aspect oriented software quality model
(AOSQUAMO), in this AHP is used to evaluate quality of
AO software systems as a single parameter. Carvahlo’s [8]
proposed quality verification framework may be used to
evaluate the quality of embedded software components.

B. A reference framework for quality software

Software quality is a fairly complex and multifaceted
concept, In [16], we proposed a reference framework
(Figure 1) to characterize the software quality models. This
framework considers four perspectives, known worlds of
the subject, of the usage, of the system and of the
development of software quality. These four perspectives
are explained by facets and their values. We have applied
this framework to quality models. This application has
revealed that none of the models covers all facets of the
framework, especially the system and development facets,
which explains the gap between these models and their
operational use. This piece of work has allowed us to
highlight the need for a Meta model, the aim of which is not
only operationalizing the existing software quality models
but also correcting their general oversights and limitations.

We have applied this reference framework to quality
models. The software quality models that we studied are not
complete as our frame of reference. Indeed, various facets
are not covered by some models. Also, no model covers all
frame facets. This means that the models are not complete
but fragmented. Gaps are not obvious to the use and subject
worlds. Nevertheless here are some of the issues faced by
the quality models in these two worlds: Absence of an
explicit model; Lack of decomposition criterion in
hierarchical models; Quality attributes redundancy (one
inside the other such as safety which is strongly influenced
by the availability being a part of reliability); Some models
do not clearly tell apart the different perspectives of their
use; These models are usually limited to a fixed number of
levels, which limits the definition and structuring of
complex quality attributes into three or four levels, making
the decomposition of some factors to measurable properties
challenging; Some models do not cover the entire life cycle
of software.

Figure 1: Reference framework

Adil KHAMMAL et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1728-1734

www.ijcsit.com 1729

As far as the system and development world are

concerned, which respectively own disclosures on the
subject world and the tools to achieve objectives of
software quality, shortages are particularly egregious for
software quality models. This explains the gap between
these models and their operational application. The
problems of quality models in these two worlds are mainly
due to the "Tools" and "Metric" facets, which we sum up as
follows: Most models studied do not have a clear vision to
explain the correlation between metrics and criteria, such as
when a criteria gets a low score, it is difficult to link the
score to directly point out the issue, especially when the
criterion is made up of several metrics; Also most of these
models suffer from the absence of guidelines and criteria
for decomposition of complex quality concepts, making it
difficult for them to be sophisticated and even located in
some large quality models; Some models are not that
simple tobe implemented in an environment because of the
amount of defined criteria and metrics; Due to the lack of
clear semantics, the aggregation of measured values
remains complicated; Models are not included in all the
various tasks related to quality; There is no clear definition
of the way in which we use a model.

In other words, this reference framework has allowed us
order to characterize and compare different models of
software quality on one hand. On other hand, we aim to
highlight the key elements that must be considered to
provide a Meta model of software quality.

C. Meta model of software quality

Most quality models mentioned above include a wide
variety of different information in a quality model.
Therefore, their main challenge is to find an adequate
mechanism to structure the information. The structuring
mechanism must allow unambiguous definition, without
duplication, without contradiction of terms and concepts. In
addition, the mechanism should also be able to relate the
abstract quality characteristics with specific properties,
components and measures to quantify. As we have seen in
[16] These objectives are generally not respected by the
quality models. The majority of these models are very
useful in various fields. However, for proper management
of software quality throughout the entire life cycle of a
software product, we need to combine these isolated models
to achieve a more complete picture of the quality of
software. To overcome the ambiguity and completeness of
non-quality models problems, we must then define a formal
quality Meta model.

Independent of the modelling technique used to build a
quality model, Deissenboeck [15] considers the existence of
a defined Meta model as crucial. Even though, in many
cases, quality Meta models are not explicitly defined for
existing quality models. Accordingly, he defines: Quality
Meta Model - A model of the constructs and rules needed
to build specific quality models.

A quality Meta model must be generally easy to use,
cover all aspects of quality, consider all possible
characteristics of the underlying areas, be flexible enough to
be applicable in all areas of application with modifications

or minor additions. It must meet all the needs of interested-
parties and must serve as a standard for evaluation of
software products. So to do this, it must appeal to processes
and tools of metamodeling that will allow a quick
understanding of the concepts defined in different models
and will also facilitate the handling of these models and
concepts using a Meta model.

3. DESCRIPTION OF OUR METAMODELING APPROACH

In this section, we explain the methodology adopted for
the development of the Meta model of software quality.
Based on the model driven and factoring concepts
engineering, we defined a three-step approach. This
approach allows to get close and create a single integrated
model, a Meta model that we call General (PIM GPIM),
starting from several different models or standards.

As we mentioned, a software quality meta-model must
cover all aspects related to the field of quality, it must also
contain all possible characteristics of the underlying areas.
Our meta-model, therefore, will consist of the concepts of
the different models of quality and also concepts from
measurement models as this is a very important field of
software quality which is focusing on metrology-related
concepts software.
Step 1: Construction of PIM: Faced with a multitude of

standards and models using different names often
for the same concept of software quality, the
objective of this step is to capture the key concepts
of the Meta model. A concept can be defined as the
intellectual representation of an abstract idea. This
is the idea that one has on a thing by detaching it
from its real object.
In order to capture different concepts, we have to
proceed first to a transformation of PSM of the
models chosen to build the Meta model into a PIM
whichconsists of a number of concepts (classes).
At the end of this stage we will have a list of
concepts used in different models.

Step 2: Factoring of concepts: The objective of this step is
to compare the extracted different PIM concepts in
order to factor them in a PIM General. Once the
concepts are selected, we will analyze the
differences and reconciliations. To do this, we
perform a mapping between the concepts of these
models. This mapping should determine:

 The levels of abstractions of selected
models;

 For each concept model, its relationship
to the concepts of the other model;

 A correlation level to qualify each
relationship.

To make this comparison, we will define the terms
used in the process that leads to the factorization of
concepts.

 A specific concept is a concept belonging
to a single software quality model.

 A common concept is a concept existing
in at least two sources and models with a
minimum set of common characteristics.

Adil KHAMMAL et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1728-1734

www.ijcsit.com 1730

 A reference concept is a concept that
belongs to our frame of reference.

The general Meta model of software quality
(General GPIM) consists of reference concepts
identified in our reference framewok and maximum
intersection of all common concepts among all
quality models sources.
Each model will be for us a PIM that contains
several concepts of a software quality model, so we
can write:

PIMi = { Cj ,∀ܒ ∈ {Cj∈PIMi ,ۼ

 GPIM = PIMref⋃൛⋃ ܒܒۻ۷۾⋂ܑۻ۷۾
ܑ 			/		ܑ ് ൟܒ

Step 3: Building a GPIM:
In this step we will proceed to: Solve all
contradiction relations; Avoid duplication of
concepts by consolidating them to the relationships
with identity and inclusion; Maximize the potential
for synergies by combining complementary
concepts. Not taken into account concepts can be
of two types:
 no correspondence exists in the mapping

done;
 one (or more) connection (s) exist(s) but with

low or average levels of correlation.

4. GENERAL META MODEL OF SOFTWARE QUALITY

A. Construction des PIM

1) Hierarchical models: In order to capture different
concepts, we begin with a transformation of PSM
hierarchical models to a PIM which consists of a number of
concepts (classes). We defined the specific structure of each
quality PSM model, to move to a higher level of abstraction
that includes all the common concepts of hierarchical
models. Generally, these models are divided into
hierarchical elements with the following structure: factors,
sub-factors, criteria and metrics. The following table (Table
1) presents a comparison of the structure of these models.

2) From the comparison above between quality
models (Table.1), we proposed [17] PIM (Figure 2) for all
existing hierarchical models, it can generate models as
ISO9126, MacCall,... or generate personal models
according to the requirements of the designer (User,
developer, etc.).

Figure 2: PIM of hierarchical software quality models

This PIM model (Figure 2) is divided into hierarchical

elements. It structure quality is divided into three levels:
view, characteristic and metric, whose characteristics can be
divided into several subcharacteristics and so on.

1. Overview (Point of view): Quality can be
perceived with various points of view, differences
of views are mainly due to the fact that the project
has many stakeholders, each stakeholder perceives
the quality of its manner, what implies a prospect
focused on the specific requirements of
stakeholder towards the system.

2. Characteristic: After the view, we find the
characteristics, (called Factors, Goals, Properties,
etc), these characteristics are broken up into
several under-characteristics until arrived in
granular indecomposable characteristics and which
are directly measurable by metrics.

3. Metric: A metric used to measure and evaluate a
characteristic by values.

Table 1: A Comparison Between The Structures Of Model Quality Software

 Mac Call Bohem ISO GQM IEEE 1061 Dromey

Level 1 View View View View View View

Level 2 Factors
high-level

characteristics
Characteristics Goals Factor Product properties

Level 3 Criteria
Intermediate level

characteristics
Sub-characteristics Questions Subfactor Quality attributes

Level 4 -
primitive

characteristics
Quality Attributes - - sub-attributes

Level 5 Metric Metric Metric Metric Metric Metric

View

+View_Name

characteristic

+Characteristic_Name

Metric

+Metric_Name
+Metric_Value

+Contains

1..*

0..*

0..* 1..*
+subcharacteristic

0..*

0..*

Model

+Model_Name

+Contains

1..*

0..1

Adil KHAMMAL et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1728-1734

www.ijcsit.com 1731

3) Non-hierarchical models: Regarding the non-
hierarchical models (Quacomo, QUIMERA), the major
part of them are already presented in the literature as PIM
class diagram. We will use the PIM models proposed in
[20] [21] [22] [23]

4) Model of software Measurement: In order to
appropriate concepts dedicated to the specification of
measurement and estimation methods we will base mainly
on proposals of F. Ruiz [18] and F. Garcia [19].

After this first stage we will have a list of concepts used in
different models.

B. Factoring of concepts

In this step we will list the concepts of the different
models that we use to build our general Meta model of
software quality GPIM. This list will allow us to categorize
these concepts according to their type: Concept of
reference, common concepts or specific concepts (Table 2).

After analyzing the various PIM, we could identify
potentially factorable concepts in the general Meta model
GPIM. So we have a list of concepts that must be analyzed
and refined to build the general Meta model of software
quality GPIM.

Table 2: A Comparison Between The Concepts

Model
Concepts

Reference concept Common concept Specific concept

PIM of refence
framework[16]

Objetc, Phase, View,
Objective,charateristic, Metric,
Documents, tools, Methode

- -

PIM of hierarchical
models[17]

View, Characteristic, Metric
- -

Quacomo[20]
Factor (Characteristic), Proprty
(SubCharacteristic), EntityType (Objet),
Measure (Metric),

QualityRequirement Impact, QualityAspect,
ImpactEvluation,
QAspectEvluation

QUIMERA PIM
[21]

Criterien (Characteristic), Artifact (Objet),
Metric

Attribute, EvaluationMethod,
Practice, Recommandation,

Limits

SQMREA PIM
[22]

Characteristic, Metric, Artifact (Objet) Attribute, Need, Requirement Quality, SoftwareProduct,
QualityLevel

PIM Parastoo et al.
[23]

QualityGoal (Objective),
ViewPoint(View),

EvluationMethod, Practice,
Purpose,

QualityFramework,
QualityCarryingProporty, Target,

PIM
F. Ruiz et al

[18]

Artefact, Defined Metric, Information
Needs, Information Product, Measurable
Object, Measurable Concept, ,
Measurement Method, Measurable
Method,Metric, Analysis Model,
Measurement Function,

Decision Criteria, Indicator,
Base Metric, Derived Metric
Attribute,

Activity ,Agent,
Element, Interpretation,
Measurement,
Observation

PIM
F. Garcia et al

[19]

Measurable Concept,Entity,
Entity Class, Information Need,
Measurement Approach, Measurement
Method, Measurement Function, Analysis
Model, Measure,Quality Model

Decision Criteria,
Indicator,Base Measure,
Derived Measure,Attribute

Scale
Type of Scale
Unit of Measurement
Measurement
Measurement Result

C. Meta-model building:

In order to build our General Meta model of software
quality, we must resolve all contradictions of relationships
between concepts, avoid duplication of concepts by
consolidating relationships with identity and inclusion. In
other words, some of the concepts in the list are likely to be
in GPIM while others must be specifically analyzed,
validated and renamed.

We produce candidate field’s concepts for GPIM (Figure
3). These concepts are concepts observed in both the PIM
of our frame of reference and in different PIM of other

models. These concepts can also be present in both
abstractions in both PIM.

The concepts of our meta-model are divided into four
separate packages related to each other:
• Package Subject: contains Artefact oriented concepts
• Package Usage contains the concepts oriented

objective model
• Package System: contains Quality oriented concepts
• Package Development: contains oriented measurement

and tools concepts

Adil KHAMMAL et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1728-1734

www.ijcsit.com 1732

Figure 3: General Meta-model for software quality

5. CONCLUSION

Existing models of software quality are used to define a
static set of characteristics and define the relationships
between these different characteristics so that they should
rather be selected dynamically based on stakeholder needs.
The ideal solution to this problem is to have a dynamic and
flexible framework, a Meta model, which will allow
developers to define a quality model based on context. In
this article we proposed a methodology based on the
architecture model driven to build a Meta model of
software quality. Using this methodology we were able to
gather fundamental concepts in the field of software
quality. This Meta model will overcome the gaps and
limitations of existing models. It conforms to the MOF
architecture and it is defined as an extension of UML Meta
model. Besides, it incorporates the majority of the most
important aspects of software quality in a unique
framework and takes into account previous work in the
field of quality software.

Our future work consists to generate an ontology of
software quality. This ontology will be the basis of an
integrated tool for managing software quality.

REFERENCES
[1] BOEHM, Barry W., BROWN, John R., et KASPAR, Hans.

Characteristics of software quality. 1978.
[2] Dromey R. Geoff A Model for Software Product Quality [Journal]. -

[s.l.] : IEEE Transactions on Software Engineering, 1995. - 2 : Vol.
21.

[3] INTERNATIONAL ORGANIZATION FOR
STANDARDIZATION/INTERNATIONAL
ELECTROTECHNICAL COMMISSION, et al. Software
engineering–Product quality–Part 1: Quality model. ISO/IEC, 2001,
vol. 9126, p. 2001.

[4] MCCALL, Jim A., RICHARDS, Paul K., et WALTERS, Gene
F. Factors in Software Quality. Volume-III. Preliminary Handbook
on Software Quality for an Acquisiton Manager. GENERAL
ELECTRIC CO SUNNYVALE CA, 1977.

[5] SHARMA, Arun, KUMAR, Rajesh, et GROVER, P. S. Estimation of
quality for software components: an empirical approach. ACM
SIGSOFT Software Engineering Notes, 2008, vol. 33, no 6, p. 1-10.

[6] BEHKAMAL, Behshid, KAHANI, Mohsen, et AKBARI, Mohammad
Kazem. Customizing ISO 9126 quality model for evaluation of B2B
applications.Information and software technology, 2009, vol. 51, no
3, p. 599-609.

[7] SRIVASTAVA, Praveen Ranjan et KUMAR, Krishan. An approach
towards software quality assessment. In : Information Systems,
Technology and Management. Springer Berlin Heidelberg, 2009. p.
150-160.

[8] CARVALHO, Fernando et MEIRA, Silvio RL. Towards an
Embedded Software Component Quality Verification Framework. In

Adil KHAMMAL et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1728-1734

www.ijcsit.com 1733

: Engineering of Complex Computer Systems, 2009 14th IEEE
International Conference on. IEEE, 2009. p. 248-257.

[9] KUMAR, Avadhesh, GROVER, P. S., et KUMAR, Rajesh. A
quantitative evaluation of aspect-oriented software quality model
(AOSQUAMO). ACM SIGSOFT Software Engineering Notes, 2009,
vol. 34, no 5, p. 1-9.

[10] MANUEL, F. Quality Attributes for COTS Components. I+ D
Computacion, 1 (2), 2002, p. 128-143.

[11] GEORGIADOU, Elli. GEQUAMO—a generic, multilayered,
customisable, software quality model. Software Quality Journal,
2003, vol. 11, no 4, p. 313-323.

[12] ORTEGA, Maryoly, PÉREZ, María, et ROJAS, Teresita.
Construction of a systemic quality model for evaluating a software
product. Software Quality Journal, 2003, vol. 11, no 3, p. 219-242.

[13] ANDREOU, Andreas S. et TZIAKOURIS, Marios. A quality
framework for developing and evaluating original software
components. Information and software technology, 2007, vol. 49, no
2, p. 122-141.

[14] GRADY, Robert B. Practical software metrics for project
management and process improvement. Prentice-Hall, Inc., 1992.

[15] DEISSENBOECK, Florian, JUERGENS, Elmar, LOCHMANN,
Klaus, et al.Software quality models: Purposes, usage scenarios and
requirements. In :Software Quality, 2009. WOSQ'09. ICSE Workshop
on. IEEE, 2009. p. 9-14.

[16] Adil Khammal, Youness Boukouchi, Abdelaziz Marzak, Hicham
Moutachaouik, Mustapha Hain, A Reference Framework For A

Classification Of Software Quality Models, IOSR Journal of
Computer Engineering (IOSR-JCE), Volume 18, Issue 2, Ver. II
(Mar-Apr. 2016), PP 69-76

[17] BOUKOUCHI, Youness, KHAMMAL, Adil, MARZAK,
Abdalaziz, et al. A Meta model for Quality Software Based on the
MDA Approach

[18] RUIZ, Fransisco, GENERO, Marcela, GARCÍA, Félix, et al. A
proposal of a Software Measurement Ontology. Department of
Computer Science University of Castilla-La Mancha, 2008.

[19] GARCÍA, Félix, RUIZ, Francisco, CALERO, Coral, et al. Effective
use of ontologies in software measurement. The Knowledge
Engineering Review, 2009, vol. 24, no 01, p. 23-40.

[20] WAGNER, Stefan, LOCHMANN, Klaus, WINTER, Sebastian, et
al. The Quamoco quality meta-model. Technische Universitaet
München, Tech. Rep. TUMI128, 2012.

[21] FREY, Alfonso Garcia, CÉRET, Eric, DUPUY-CHESSA, Sophie, et
al.QUIMERA-Toward an Unifying Quality Meta model. In
: INFORSID 2011. 2011.

[22] DUBIELEWICZ, Iwona, HNATKOWSKA, B., HUZAR, Z., et
al. Software quality Meta model for requirement, evaluation and
assessment. In : ISIM06 Conference, vol. 2006. p. 115-122.

[23] MOHAGHEGHI, Parastoo et DEHLEN, Vegard. A Meta model for
specifying quality models in model-driven engineering. In : Proc.
The Nordic Workshop on Model Driven Engineering. 2008. p. 51-65.

Adil KHAMMAL et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1728-1734

www.ijcsit.com 1734

